Two-dimensional density estimation using smooth invertible transformations

نویسندگان

  • Ethan Anderes
  • Marc Coram
چکیده

We investigate the problem of estimating a smooth invertible transformation f when observing independent samples X1, . . . , Xn ∼ P ◦ f where P is a known measure. We focus on the two dimensional case where P and f are defined on R. We present a flexible class of smooth invertible transformations in two dimensions with variational equations for optimizing over the classes, then study the problem of estimating the transformation f by penalized maximum likelihood estimation. We apply our methodology to the case when P ◦ f has a density with respect to Lebesgue measure on R and demonstrate improvements over kernel density estimation on three examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general spline representation for nonparametric and semiparametric density estimates using diffeomorphisms

A theorem of McCann [15] shows that for any two absolutely continuous probability measures on Rd there exists a monotone transformation sending one probability measure to the other. A consequence of this theorem, relevant to statistics, is that density estimation can be recast in terms of transformations. In particular, one can fix any absolutely continuous probability measure, call it P, and t...

متن کامل

Functional Data Analysis for Density Functions by Transformation to a Hilbert Space

Functional data that are non-negative and have a constrained integral can be considered as samples of one-dimensional density functions. Such data are ubiquitous. Due to the inherent constraints, densities do not live in a vector space and therefore commonly used Hilbert space based methods of functional data analysis are not applicable. To address this problem, we introduce a transformation ap...

متن کامل

An Algorithm for Determining Invertible Quadratic Isoparametric Finite Element Transformations

This paper derives an algorithm which determines the invertibility of arbitrary two-dimensional quadratic isoparametric finite element transformations. Theorems verifying the algorithm and guiding the construction of invertible transformations are proven.

متن کامل

Identification of Hazardous Situations using Kernel Density Estimation Method Based on Time to Collision, Case study: Left-turn on Unsignalized Intersection

The first step in improving traffic safety is identifying hazardous situations. Based on traffic accidents’ data, identifying hazardous situations in roads and the network is possible. However, in small areas such as intersections, especially in maneuvers resolution, identifying hazardous situations is impossible using accident’s data. In this paper, time-to-collision (TTC) as a traffic conflic...

متن کامل

Density estimation using Real NVP

Unsupervised learning of probabilistic models is a central yet challenging problem in machine learning. Specifically, designing models with tractable learning, sampling, inference and evaluation is crucial in solving this task. We extend the space of such models using real-valued non-volume preserving (real NVP) transformations, a set of powerful, stably invertible, and learnable transformation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008